The first two cacti with larger multiplicative eccentricity resistance-distance

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The degree resistance distance of cacti

Graph invariants, based on the distances between the vertices of a graph, are widely used in theoretical chemistry. The degree resistance distance of a graph G is defined as D R (G) =  {u,v}⊆V (G) [d(u) + d(v)]R(u, v), where d(u) is the degree of the vertex u, and R(u, v) the resistance distance between the vertices u and v. Let Cact(n; t) be the set of all cacti possessing n vertices and t cy...

متن کامل

On multiplicative Zagreb eccentricity indices

Abstract Analogues to multiplicative Zagreb indices in this paper two new type of eccentricity related topological index are introduced called the first and second multiplicative Zagreb eccentricity indices and is defined as product of squares of the eccentricities of the vertices and product of product of the eccentricities of the adjacent vertices. In this paper we give some upper and lower b...

متن کامل

Chain Hexagonal Cacti with the Extremal Eccentric Distance Sum

Eccentric distance sum (EDS), which can predict biological and physical properties, is a topological index based on the eccentricity of a graph. In this paper we characterize the chain hexagonal cactus with the minimal and the maximal eccentric distance sum among all chain hexagonal cacti of length n, respectively. Moreover, we present exact formulas for EDS of two types of hexagonal cacti.

متن کامل

Multiplicative Distance Functions

We call φ the root function of Φ. The continuity of Φ implies that (1.2) φ(γ) → |γ| as |γ| → ∞. Moreover the converse is true, if φ is continuous and satisfies this asymptotic formula, then the function Φ formed as in (1.1) is a multiplicative distance function. Theorem 1.1. A continuous function φ : C → [0,∞) is the root function of a multiplicative distance function iff it satisfies (1.2). Ar...

متن کامل

Multiplicative Zagreb Eccentricity Indices of Some Composite Graphs

Let G be a connected graph. The multiplicative Zagreb eccentricity indices of G are defined respectively as Π1(G) = ∏ v∈V (G) ε 2 G(v) and Π ∗ 2(G) = ∏ uv∈E(G) εG(u)εG(v), where εG(v) is the eccentricity of vertex v in graph G and εG(v) = (εG(v)) . In this paper, we present some bounds of the multiplicative Zagreb eccentricity indices of Cartesian product graphs by means of some invariants of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Filomat

سال: 2019

ISSN: 0354-5180,2406-0933

DOI: 10.2298/fil1906783h